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1 Introduction

The intent of this short note is to compile my ideas for using the existing mathematics
and physics of linear elasticity to provide a cost function and deformation basis for the
TSWarp project. I do not present a definitive answer; I merely suggest possibilities and
provide the necessary framework for further discussion. Once the features of desired
warps are determined then the cost function can be constructed quickly. I assume that
the reader is familiar with the TSWarp concept and I will not re-invent it here.

Some of the nice features of an elasticity-based warping cost are: the mathematics
is fully developed; all connected warps are potentially realizable; and natural distortion
basis functions are often available. Possible drawbacks are that a warping cost of elastic
energy is linear and often restricted to crystal symmetries.

Section 2 presents the equations of linear elasticity of solids and fluids. This includes
all of the notation (without apology), the equations of motion and the elastic energy
equations. The concept of normal harmonic modes is presented and discussed in the
context of TSWarp. Section 3 provides a descriptive discussion of the elastic constants
and solid deformations. Section 4 presents specific solutions for a variety of special
cases. For each case I present a formulation for calculated the energy cost function and
determining the natural deformation basis. Section 5 addresses the question of using a
rectangular TS space to represent a cylindrically symmetric underlying space. Examples
are included here also and they are compared to those of the previous section. A final
section outlines my recommendations for trial bases and cost functions.



2 Linear Elasticity Equations

The elastic equations are presented here without a lot of derivation, but hopefully with a
good amount of discussion and explanation. Everything is written in the usual summation
notation (repeated indices indicate sums over their range). All equations utilize cartesian
coordinates, which fortunately are a natural for the TSwarp concept.

The strain (relative deformation) for a material is given by a rank 2 tensor

1 auk 8ul
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where the indices range along the three spatial dimensions, uy is the displacement from
equilibrium in the &% direction and OQuy/0x; then is the relative displacement in the k!
direction moving along the [ direction. Remember that, in general, uy, = uy(z1, T2, 3).
This strain tensor is the symmetric part of the more intuitive tensor ex; = duy/0x;. The
symmetric choice shown above eliminates rigid rotations.

Similarly, the stress (tension) for a material is also a rank 2 tensor o;;. The stress
and stain are connected by a Hooke’s Law relationship through a rank 4 tensor:

Oij = Cijki€kl- (2)

This rank 4 tensor c;j; is the elasticity tensor and is identical in concept to the

constant connecting the restoring force and displacement of a simple harmonic oscillator.

It will be important for us to consider the simple harmonic motion of a material of
elasticity c;jr;. The equations are

prui + Cijriug, i = 0. (3)

The boundary conditions vary among applications and can be quite complex. Two that
are of importance (because they are simple) are free boundary conditions

’I'LjO'ij = njcz-jkluk,l =0 (4)

and fixed boundary conditions

TLjUj =0. (5)

The elasticity tensor has up to 81 values (3*). Fortunately, the number of independent
values can be no greater than 21 due to symmetry constraints (not material constraints).
[If the stout at heart wish to closely examine these symmetries, one finds that by consid-
ering shear strains we have c;jx = c;ji, by considering axial strains we have c;ji = cjik,
and by considering centrosymmetry we have ¢ = Cgij.|

Because of all of these wonderful symmetries it is possible to reduce the complexity
of the notation. This is done by convention using the following index correspondences:

11—-1 22—2 33—-3 23—4 13—5 126 (6)

which allow the stress and strain tensors to be written as matrices with simplified nota-
tion:
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As a result, the elasticity tensor is also written as a matrix:

C11 Ci2 C13 Ci4 C15 Ci
Co1 Co2 C23 Co4 C25 Cop
C31 C32 C33 C34 C35 C36 (9)
Cq1 C42 C43 Caq C45 Cyg
C51 Cs2 Cs53 Cs4 Cs5 Csp
Cé1 Ce2 C63 Cea Co5 Cob

Cijkl —

At least now we can write down the elasticity equations in a relatively simple notation.
Note, however, that these new matrices are not tensors and they do not transform as
tensors. For example, a coordinate transformation on the elasticity must be performed
on ¢k and not on the reduced notation matrix c;;.

Next, I present the energy equations. The infinitesimal work dW done on a solid
through a set of small strains de; is

dW = o;de;. (10)

Using Eq.2 in reduced notation and integrating, the energy density per unit volume
e is found to be

1
€ = §Cz’j6i€j, (11)
and the strain energy E of the solid is
1
FE = 5 VCijGidoV (12)

It is this energy that I propose as a warping cost function.



3 Discussion on Elasticity

I will now try and give the reader an intuitive feel for the meaning behind the various
elastic constants ¢;; and the energy cost function E. At times it will be necessary to take
brief forays into crystal symmetry.

For clarity, let the three spatial dimensions now be given their application descrip-
tions: the indices (i, j, etc.) can take on the three directions (¢, z,7) corresponding to
the direction axes of the TSwarp space. Beginning with the strains we have the useful
descriptions:

€4 = €1 t-dependent deformation in the t direction
€,, = €5 z-dependent deformation in the z direction
€+ = €3 r-dependent deformation in the r direction
€, = €4 z-dependent deformation in the r direction
€+ = €5 r-dependent deformation in the t direction
€, = €¢ t-dependent deformation in the z direction

Keep in mind that €;; = €j; provides the remaining definitions (inherent in the reduced
single-index notation.

Consider €;. This corresponds to a stretching in the time dimension whose magni-
tude depends only on the time coordinate value. One can imagine taking a rectangular
parallelepiped (RP) and lengthening it into a larger RP.

Consider €5. This also corresponds to a stretching in the time dimension. But the
magnitude depends only on the local z-coordinate value. An ¢g shifts constant-z surfaces
in the t-direction.

The remaining four deformation types are identical to those just described but applied
to the various axes.

The stresses (tensions) are defined analogously to the strains. So, for all 21 possible
elastic constants we have the following descriptions of the Hooke’s Law type connections
between the stresses and strains:



c;1 : uniaxial t stress = t extension strain

Ccyo : uniaxial z stress = z extension strain

c33 : uniaxial r stress = r extension strain

css : z-dep r shear stress = z-dep r shear strain
cs5 . r-dep t shear stress = r-dep t shear strain
ce¢ : t-dep z shear stress = t-dep z shear strain
c12 : uniaxial z stress = t extension strain

c;3 : uniaxial r stress = t extension strain

Co3 : uniaxial r stress = z extension strain

c14 : z-dep r shear stress = t extension strain
c15 . r-dep t shear stress = t extension strain
cig . t-dep z shear stress = t extension strain
Cos : z-dep r shear stress = z extension strain
cos : r-dep t shear stress = z extension strain
co¢ : t-dep z shear stress = z extension strain
c3s : z-dep r shear stress = r extension strain
c35 : r-dep t shear stress = r extension strain
c36 : t-dep z shear stress = r extension strain
cs5 : r-dep t shear stress = z-dep r shear strain
cs¢ : t-dep z shear stress = z-dep r shear strain
cs¢ : t-dep z shear stress = r-dep t shear strain

For example, c;3 > 0 means that a stretching in the z-direction will produce an ax-
ial tension in the t-direction. With free boundary conditions this means the material will
expand in the t-direction. Similarly, if ¢;o < 0 the material will contract in the t-direction
under the same conditions.

Consider c¢14 # 0. This term shows that a z-direction shear dependent on the time
coordinate (displacing the equal time surfaces in the z-direction) produces an axial tension
in the t-direction! This example seems to be unrealistic, but this situation is possible
when one considers molecular orientation effects in real crystals.

Consider c56 # 0. The same shear as just described can now also produce a t shear
of r-dependence. This effect also can only be due to molecular orientation effects.

The possibilities are rich indeed. All 21 coefficients can be independent; indeed they
are for triclinic crystals. The various physically realizable crystal symmetries have varying
number of independent coefficients (not all combinations are allowed!). But even an
isotropic material is nontrivial with two independent coefficients: ci1 = o9 = ¢33, 12 =
C13 = Co3,and ¢4 = c55 = cg6 = (€11 — ¢12)/2. They are also related to the (possibly more
familiar) Lamé parameters: A = c¢11, 4 = ¢44 and Poisson’s ratio o = ¢11/2(c11 + €44).

The entire c;; description is given here because it is not obvious to me which terms
might be more or less important for the TSWarp application. The presence of nonzero
terms can only be decided on the basis of the underlying physics of the problem — a topic
which is beyond the scope of this note.



4 Cost Functions and Deformation Bases

In this section I present several cost function possibilities based upon resolvable cases
of Eq. 3. The cost functions are accompanied by a natural basis set describing the
deformation.

4.1 Anisotropic Fluid

Yes, so far as I am aware, there isn’t any such material as an anisotropic fluid. Neverthe-
less, the mathematics does not suffer and this material description may be the simplest
nontrivial solution to the TSwarp cost function. A fluid has no shear components to
the stresses or strains. So only three elasticity components are needed to describe the
behavior: i1, co9, and c33. If these constants are allowed to be independent then we have
our anisotropy.

For this simple system the normal modes and energies of harmonic motion can be
computed. Then, if an arbitrary warp is described as a sum of normal mode amplitudes
then the problem of calculating the cost function is solved. The derivation proceeds as
follows.

A fluid of constant vorticity is described by a velocity potential function ®:

- 0P
v =—-Vo;, = p=— 13
P=pg (13)
Here I use 7 to indicate wave motion time to avoid confusion with the TSWarp time
t. For simple harmonic motion, the wave equation becomes

V20 4+ k*® =0 (14)

where k£ is the ratio of the harmonic frequency to the wave velocity k& = w/c. For the
TSWarp project ® = ®(z,r,t). I first consider the boundary conditions to be free at all
surfaces except at r = 0 where rigid boundary conditions will be enforced:

v, =0 atr=20
(15)
X

5 = 0 otherwise at boundaries

I am using the idea that the velocity field is equivalent to the displacement field mod-
ulo a time shift. The spatial amplitude of the velocity and displacement are proportional.
Thus, either is descriptive of the desired eigenmode basis. Now, the wave equation

0? 02 0?
<—+—+—><I>+k2<[>:0 (16)
is easily solved using the standard method of separation of variables:

® = f(2)g(r)h(t)

f(z) = a,sin(k,z) + B,cos(k,z)
g(r)= ozrsm(k r) + Brcos(k.r)
h(t) = a;sin(kit) + Bicos(kt).

(17)



Applying the boundary conditions on the intervals 0 < z < b, 0 <r<cand0<t<c¢
yields the velocity potential functions

i 2p—1
@y = Pygsin (710) sin (M2 sin ((B2ZDT0 (18)
’ a b 2c
where \ indexes the positive integer triplet (m,n,p) that identifies the mode. The dis-
placement vector is determined from 0, /01 = —V®,:

iy = Ny [?cos (mth) sin ("“) cos <7(2p_1)7”" t
+2% sin (™) cos (“7%) cos (L’_Cl)w) z (19)

—7(21’;(11)”8@'71 (1) sin (252) sin (L’_l)w) f]

A volume normalization

/ ﬁAUAldV = 5)\,)\1 (20)
v

yields the mode-dependent normalization factor

~1/2
8 \'?(m* n* (2p-1)*
Ny — meer W 21
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Continuing this example, the energy density, Eq. 11, is given by:

1
ey = 3 [01163 + 02263 + 03363] ) (22)

1 (o, 1P 1 [0, .17 1 Jo._. ]
eA:icn [a (ux't):| +§sz [& (UAZ)] +5033 [E (UA'T)} . (23)

The total energy in a given mode is the integral of Eq. 23 over the volume of the fluid.

It is
E,\ = (g)4ach§ !cn (%)4 + €99 (%)4 ~+ 33 (%)1 (24)

A given arbitrary small warping is represented by @ = )i, and the total energy is

E = Oé?\E)\ (25)

where repeated indices indicate summation over all possibilities.

Here is an example of a cost function (Eq. 25) that is easy to compute given the
anisotropic fluid deformation basis (Eq. 19). It is possible to choose a finite basis set that
emphasizes some directions over others by either limiting the maximum utilized (m, n, p)
or by suitable choices of the elastic coefficients. The potential of the latter is more fully
explored in the section on RUS solids.



Alterations in the boundary conditions are not transparent to either the basis func-
tions or to the energy. For example, if a fixed boundary is imposed at r = ¢ as well as at
r = 0 then g(r) = B.cos(pn/c) and (p — 1/2) — p in all other equations.

It may take extra thought and some work to establish the best deformation basis. The
anisotropic fluid model is quite simple. Potential pitfalls are that it does not contain pure
shear deformations and it cannot easily accommodate mixed boundary conditions. So,
it may be revealed through testing that this model is not sufficient to describe necessary
warps. On the other hand, a perfect basis may not be necessary. It is sufficient that the
warping cost forces the simulation parameterization to converge to a zero-warp state.

4.2 Fluid

An isotropic fluid (the kind that really exists on planet Earth) is described by the equa-
tions in the previous section with the one modification that c¢;; = c99 = ¢33. In fact, ¢1
is the bulk modulus K of the fluid:
op
=K= V==L, 26
C11 v (26)
The cost function is

(27)
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This energy is not much simpler than for the anisotropic fluid and includes the loss
of generality in choosing elastic constants.

4.3 Isotropic Solid

The simplest possible physically realizable solid material is one that is isotropic. Two
elastic constants are all that are needed to describe the stress-strain behavior: one for
compressional effects and one for shear effects. The relationships are c¢;; = co9 = ¢33,
C19 = C13 = Co3, and cgq = 55 = o6 = (1/2)(c11 — c12) as well as all related equivalences.
The equations of harmonic motion show that even this solid is not quite so simple as one
might wish. The coupled equations of motion are:

2, _
—2pwur = c11 (2u111 + U133 + U1 92)
+cig (2ug12 + 2ur 91 + 2us 13 + 2u1 31 — U 33 — Up22)

2,  _
—2pwiug = c11 (2ug,22 + U1 + Us33)

28
+ci2 (2usz 03 + 2ug 32 + 2ug 21 + 2Ug 12 — Uz 11 — U 33) (28)

2, _
—2pwuz = c11 (2uz 33 + us 20 + U3 11)
+e1o (2uy 31 + 2ug 13 + 2ug 30 + 2u3 03 — Uz — Us 1)
These equations are nontrivial and I am not aware of analytical solutions, nor have I
searched for any. Even in some simple cases no analytic solutions exists (e.g. sphere, thin



rod). It seems unlikely that a two-parameter isotropic solid solution would perform much
better as a cost function to the three parameter anisotropic fluid solution. Nevertheless,
an accurate numerical solution can be obtained using the RUS method described in the
next section.

Equations 28 hint at the potential complexity in describing the motion (or energy
density) in real solids. The complexity is only defeated by numerical computation and/or
approximating methods.

4.4 RUS Solids

Resonant Ultrasound Spectroscopy (RUS) is an experimental technique for determining
the elastic constants of a solid from low frequency normal mode resonances. The math-
ematical structure can be adapted for use in computing the warping cost function and
low-frequency normal mode shapes. The method is general to all homogeneous solids, but
is not practical for all from a computational time standpoint. The solution is numerically
calculated. Given a set of elastic constants, the outputs are the resonance frequencies
below a cutoff frequency and the corresponding eigenfunctions. But, the solid must have
free boundary conditions.

Here is a summary of the mathematics. The Lagrangian for the motion of an elastic
solid is

L= / (KE — PE)dV (29)

1

L = 5 / (pw2uiu,~ - cijklui,juk,l) dV (30)
14

Variational minimization yields

0L = / (pw2ui(5u,- + cijkluk,jléui) dV — / (ﬁjcijkluk,léui) dS (31)
\4 S

Since the variation must be independent of du; the volume term of Eq. 31 yields
the harmonic equation of motion (Eq. 3), and the surface term yields the free boundary
condition (Eq. 4).

Now, expand the displacement vector in a complete (not necessarily orthonormal) set
of functions ¢,:

Ui = AixPA (32)
Then the Lagrangian takes on the form
1
L= 5/ (5ii',0w2ai/\ai/,\l¢/\¢)\' — cijklai,\ai,)\,qﬁ)\,jqﬁ/\,,l) dV. (33)
1%

If @ is written as a column vector with elements ranging over ¢ and A, then we can
define also the two matrices:



Airirx = O / OApP AV, (34)
1%

and
Bixix = cijirj / OrjOx AV, (35)
v

These matrices are square with row indices running over ¢ and A and column indices
running over ¢’ and X'. These representations simplify the Lagrangian considerably:

L= % (w*@"Ad — a" Ba) . (36)

But, better yet, if the Lagrangian is stationary with respect to the amplitudes a;y
then the displacements u; are a solution to the free vibration problem, and from Eq. 36
the eigenvalue equation is:

w?Ad = Ba. (37)

The solution to this eigenvalue equation equation yields the eigenvectors which are
exactly the normal mode displacement basis. In order to accomplish this, the function
set ¢, must be finite as well as small enough to be practical computationally. For RUS
applications A useful expansion function set is

by = xly92" (38)

where A indexes the possible positive triplets (f, g, h) such that the truncation condition
f+g+h < N is satisfied. This choice of ¢, allows the direct and analytic computation of
the matrices A and B. This function set has been shown to work well for many materials
with non-simple convex boundaries. For the RP of TSWarp a different basis set may be
more desirable. For example, one might choose an orthonormal set from the functions
shown in section 4.1 with a similar truncation condition m + n + p < N. Note that this
is not a set of normal modes — it is the expansion set by which the normal modes can be
approximated.

Next, consider the calculation of the strain energy for a given displacement vector.
There are some complications because of the expansion basis formalism. For a given N
the Rank R of the matrices A and Bis R = (N +1)(N +2)(N +3)/2. If N - o
then the solutions are ’exact’. But for computational purposes we must keep N rather
small. In addition, only the lowest frequency eigenmodes of the computable R modes
can be expected to be accurate. Experience with RUS has shown that N=10 is sufficient
to accurately compute the first 50 or so eigenmodes in a RP solid of three comparable
dimensions.

The actual computation begins with the calculation of the M lowest frequency eigen-
modes w; using Eq. 37:

w; i=1,2,..,M << R. (39)

The energy for each eigenmode is then computed for unit amplitude:

10



K3

1 1
E; = §w2117iTA117i + éwiTBwia (40)
E; = w B, (41)

E; = w*w;," Aw;. (42)

A displacement (warping) # is written as an expansion in the eigenmodes with coef-
ficients «;.

Then the total energy cost function is:

E = i"Bii = o} E;. (44)

The eigenmode energies are computed once from Eq. 41 or Eq. 42, both of which
require the solution of the eigenvalue equation (Eq. 37). The warping cost for each test
warp (Eq. 33) is then quickly computed using Eq. 44. The previous examples (high
degree of symmetry cases) are clearly special cases of this formulation.

One attractive feature of the RUS-based normal mode approach is that it provides
all of the modes that have energies below a cutoff energy and ignores all others. Thus,
by suitable choice of elastic constants, it is possible to concentrate warping along certain
directions or among certain mode types. For example, choosing a large c;; (relative to
other coefficients) guarantees that extensional modes in the 1-direction will be fewer in
number than for other directions. One can also concentrate on shear modes by making
the material very stiff toward extensional deformations. The possibilities are many, and
the RUS formalism provides this benefit without any additional work.

It is not clear to me how this approach can be generalized to include fixed or mixed
boundary conditions.

4.5 Generalized Approach

The strain energy of a solid is independent of the choice of functions describing the
stress. Thus, one can use Eq. 12 and compute the integral directly for any choice of
basis functions and boundary conditions. Two cautions come to mind. First, care must
be taken to choose an orthogonal basis. Second, it is often not clear how to obtain a
complete basis.

This approach is no more computationally costly than any of the previous methods.
One calculates the energies F; associated with the basis functions w;, expands the warping
in terms of this basis (Eq. 43), then computes the total energy according to Eq, 44.

As an example, choose basis functions found for the anisotropic fluid (Eq. 19 in Section
4.1 (thus imposing the same boundary conditions given by Eq. 15) and apply them to
the general formulation requiring 21 independent elastic constants. All other symmetries
will then be specific reductions of this result.

11



The energy is computed using the same approach outlined in Section 4.1 with care
taken to include all terms of Eq. equ:equll. The result is

_ 1 1. =4, 1. =4, 1. -4

+ (3Ca4 + c12) M*02 + (5055 + c13) M2P? + (o6 + C23) NP? (45)
+e1amPn + ci5mPp + coafPm + co6N>P + c35p° M + c36p°N

+ (016 + C45) ﬁlQT_lﬁ =+ ((325 -+ 046) ’I’T’LT_ZQﬁ =+ (034 + 656) fm‘zﬁQ]
where I use the simplified mode index notation:

= ()

n= (%) (46)

b= ((2p2—cl)7r>

These energies are easily tabulated and the eigenfunctions are simple to apply. The
total energy for a displacement 4 is given by Eq. 25.

The fluid results of sections 4.1 and 4.2 follow directly from Eq. 46 under the appro-
priate limiting cases for the c;;.

This generalized approach may not be the not be the most clever, nor is it necessarily
the most descriptive of an elastic solid. But it is probably the easiest nontrivial approach
to getting a cost function and deformation basis. The warping basis chosen for this
example is not complete. I have ignored the entire set of pure shear modes.

5 Application to Cylindrical Spatial Coordinates

This section begins with a quote of a previous discussion about using cylindrical spatial
coordinates followed by a 4D calculation example analogous to that of Section 4.5.

5.1 Previous 4D Discussion

This section addresses the challenge of using a cartesian coordinate basis to describe an
underlying time-space dynamics in cylindrical symmetry. Since the warping is applied
in the radiograph space we expect symmetry about the line r = 0. We must be careful
to not under-emphasize the effects of warping regions of large r relative to the central
regions. For the simulation space is dominated by large 7.

One possible solution is to perform a transformation on the radiograph space from
r — r? prior to warping followed by the inverse transformation. However, this would
seem to emphasize distortions at large r rather than emphasize importance or cost. It
amounts to a somewhat unusual change of basis functions.

Another possible solution is to apply position dependent elasticity. In this case, I
believe that the energy equation (Eq. 12) still holds. The resulting calculation of the
energies of the basis functions is more complicated, but otherwise we have no theoretical

12



changes. Consider the case of the anisotropic fluid with cs3 — ¢33 + Sr2. We suppose
that Eq. 23 still holds and integrate over the solid to obtain Eq. 24 altered only by
€33 — €33 + ﬁ%. Even this approach yields only an effective increase in some elastic
constants. This is a direct result of our choice of basis functions. We might then choose
a basis with amplitude dependence on r. But I don’t know what this basis might be.

5.2 Generalized Approach in 4D

Now I would like to present a cylindrical solution formulated in 4D — three spatial di-
mensions and one time dimension. The cylindrical symmetry will bring it back to 3D
but only in 4D do we find the correct eigenfunctions and energies. 1 begin with the fluid
motion basis set and apply it to the general formulation. Begin with the wave equation

10 (00 100 &0 PD
1 1 - 4
ror (T8T)+r28¢2+822+8t2+k 0, (47)

and invoke our assumption that ® is independent of the azimuthal coordinate ¢:

10 ( 00\ &0 0
z L = 0. 4
ror <T8r>+622+8t2 The=0 (48)

Again using separation of variables, we let ®(r, z,t) = f(z)g(r)h(t). For definiteness
I impose free boundary conditions on the surfaces with normals in the 2 and ¢ directions,
obtaining

(49)
h(t) oc sin (7).

The remaining radial equation is thus,

10 0 9 nm 2 mm 2
ror (7”59(”) * [’f -(5) - () ] 9(r) =0. (50)
This is the cylindrical Bessel’s Equation with solution
g(r) oc Jo(kr) (51)
where Jy(-) is the zeroth order cylindrical Bessel Function and

k2= k2 — (%)2— (%)2 (52)

A fixed boundary at r = ¢ requires that

T (ke) = 0; k= % (53)

where «,, is the py, root of Ji(x) = 0. A free boundary at = ¢ requires that

Jo(kc) = 0; k= %



where (3, is the p;, root of Jy(z) = 0. Thus, both simple boundary conditions are readily
formulated. I continue here with the free boundary condition case, so that

kQ—(m)2+(@)2+ B’ (55)
- \a b c
and the velocity potential is

_ . (mmt\ . (nmz Bpr
(b)\ = (D,\,OS’LTL (T) Sin (T) J() <7> (56)

where \ indexes the positive integer triplets (m,n,p) as usual. The displacement eigen-
modes are (following the approach taken in computing Eq. 19:

iy = M, [%cos (™It sin (222) Jo (%’") t
+5rsin (mth) cos (%) Jo (M> 3 (57)

The normalization factor M), is calculated using the volume normalization

/ (ﬁ)\l . QZ)Q) ’f’d?“d¢d2dt = 5)\1,)\2. (58)
\4

Now, skipping a lot of steps, I find the normalization factor to be

M= g |+ () < (B)] - e

For future reference, I used Eq. 54 and the identity zJ](z) = xJy(z) — Ji(x) in the
derivation. The energy density is calculated according to Eq. 23 noting that there is no
remaining ¢-dependence. I make use also of the following two relations:

A<%<@’)MT——JN@) (60)

and

c B 2
2/, [J{ (%)} rdr
BaJt (Bp) .
I do not know of a non-integral expression for the quantity I, but it can be computed

numerically to any desired accuracy. For the anisotropic fluid, the total deformation
energy per mode is

I

(61)

1 a4 1 ~4 1 A4
E)\ _ 3C11M + 5C22M + 5C33p (62)
W+ 72+

where I have defined three new mode index notation parameters:
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i =n= (%) (63)
p-vi(2)
The 4D result for an arbitrary set of elastic constants, using the incomplete basis

set Eq. 57, is Eq. 45 with the replacement p — p. 1 will reproduce it here for reference
purposes.

E\ = W+71t72+1)2) [%611m4 + 3Cn* + 5e33p’
+ (%C44 + C12) m*n? + (%Css + 013) m?p* + (%666 + 023) n*p° (64)
+C1aMPh + c15MPp + a1 + cogN®P + c35P° M + c36P° 1
+ (616 + 045) anﬁﬁ -+ (625 -+ C46) mTALQﬁ =+ (034 —+ 656) mﬁ,}?]

6 Recommendations

Based on this study of elasticity-based cost functions for TSWarp, I recommend the
following ordered list of approaches. The list suggests beginning with simple implemen-
tation with less descriptive bases and works toward more involved implementations using
complete bases of real solids. I suggest this order only because my impression is that the
simpler approaches stand a very good chance of working.

1. Utilize the deformation basis Eq. 57 and the three-parameter cost function Eq. 62.
This is the result of a 4D TSWarp-space calculation for an anisotropic fluid.

2. Utilize the deformation basis Eq. 57 and the multi-parameter cost function Eq. 64.
The underlying physics of the problem can be used to suggest which elastic coeffi-
cients should be nonzero. This choice may also be evident in studying the ways is
which the first approach fails (if it does).

3. Impose all free boundary conditions in 3D TSWarp allowing the radial coordinate
the range [—c,c|. Apply the RUS calculation to determine a set of basis defor-
mations and energies based on some knowledge of the expected elastic coefficients.
Begin with the simplest crystal symmetries and choose more complicated ones as
needed.

4. If all of the above methods have failed then I will return to the 4D generalized
approach with a more inclusive deformation basis set.
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